000 01430nam a2200277Ia 4500
008 211217s9999 xx 000 0 und d
020 _a9780262039246 (hb.)
082 _a006.31
_bSUT
100 _aSutton, Richard S.
_92583
245 0 _aReinforcement learning :
_ban introduction
250 _a2nd ed.
260 _aLondon
_bThe MIT Press
_c2020
300 _axxii, 526p.
440 _aAdaptive computation and machine learning series
_98124
500 _ahttps://mitpress.mit.edu/books/reinforcement-learning-second-edition
520 _aReinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. InĀ Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics.
650 _aReinforcement learning
_9859
650 _aArtificial intelligence
_9560
650 _aMultiarmed Bandits
_98125
650 _aFinite Markov Decision Process
_98126
650 _aMonte Carlo Methods
_98127
650 _aTemporal Difference learning
_98128
650 _aBootstrapping
_98129
700 _aBarto, Andrew G.
_98130
942 _cBK
999 _c7553
_d7553