Local cover image
Local cover image

Introduction to classical and quantum computing

By: Material type: TextTextPublication details: Nebraska Rooted Grove 2022Description: xii, 388pISBN:
  • 9798985593105 (pbk.)
Subject(s): DDC classification:
  • 005.133 WON
Summary: Introduction to Classical and Quantum Computing is for students who want to learn quantum computing beyond a conceptual level, but who lack advanced training in mathematics. The only prerequisite is trigonometry, and mathematics beyond that will be covered, including linear algebra. This book is suitable as a course textbook or for independent study. The text begins with a significant overview of classical computing, from how they add numbers to their computational limits, and it mirrors many of the quantum computing topics that are covered later. Then, the investigation of quantum computing begins with a single qubit and quantum gates acting on it, first using geometry and elementary algebra, and later using linear algebra. Computer algebra systems are utilized, and code for both Mathematica and SageMath is included. After one qubit, multi-qubit systems are covered, including how quantum computers add numbers, universal gate sets, and error correction. After this, readers learn how to program quantum circuits on actual quantum processors using IBM Quantum Experience. Afterward, entanglement and quantum protocols are explored. Finally, quantum algorithms are examined, culminating in Shor's algorithm for factoring. Abundant use of the Quirk quantum simulator is used throughout. Finally, a short discussion of careers in quantum computing is provided, along with some possible technical topics to learn next.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Book Book Plaksha University Library Computer science 005.133 WON (Browse shelf(Opens below)) Available 003736

https://www.amazon.com/Introduction-Classical-Quantum-Computing-Thomas/dp/B09QP2ML3P

Introduction to Classical and Quantum Computing is for students who want to learn quantum computing beyond a conceptual level, but who lack advanced training in mathematics. The only prerequisite is trigonometry, and mathematics beyond that will be covered, including linear algebra. This book is suitable as a course textbook or for independent study. The text begins with a significant overview of classical computing, from how they add numbers to their computational limits, and it mirrors many of the quantum computing topics that are covered later. Then, the investigation of quantum computing begins with a single qubit and quantum gates acting on it, first using geometry and elementary algebra, and later using linear algebra. Computer algebra systems are utilized, and code for both Mathematica and SageMath is included. After one qubit, multi-qubit systems are covered, including how quantum computers add numbers, universal gate sets, and error correction. After this, readers learn how to program quantum circuits on actual quantum processors using IBM Quantum Experience. Afterward, entanglement and quantum protocols are explored. Finally, quantum algorithms are examined, culminating in Shor's algorithm for factoring. Abundant use of the Quirk quantum simulator is used throughout. Finally, a short discussion of careers in quantum computing is provided, along with some possible technical topics to learn next.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image

Customize & Implimented by Jivesna Tech.

Total Visits to Site Till Date:best free website hit counter

Powered by Koha