Amazon cover image
Image from Amazon.com

Bandit algorithms

By: Contributor(s): Material type: TextTextPublication details: New Delhi Cambridge University Press 2020Description: xviii, 518pISBN:
  • 9781108486828
Subject(s): DDC classification:
  • 519.3 LAT
Summary: Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Book Book Plaksha University Library Mathematics 519.3 LAT (Browse shelf(Opens below)) Checked out 05/11/2024 002972
Book Book Plaksha University Library Mathematics 519.3 LAT (Browse shelf(Opens below)) Checked out 27/09/2024 002779

Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.

There are no comments on this title.

to post a comment.

Customize & Implimented by Jivesna Tech.

Total Visits to Site Till Date:best free website hit counter

Powered by Koha